
Solving Inhomogeneous 2nd Order Differential Equations

Using Fourier Series

Charles Kolozsvary M597F

May 21, 2023

After taking an introductory ODEs course, one would find that solving 2nd order homoge-
neous ODEs is rather simple. For a DE (differential equation) of the form

y′′ + by′ + cy = 0,

we can find the solution to the characteristic equation r2 + br + c = 0, which gives

r =
−b±

√
b2 − 4c

2
= α± β

by the quadratic formula. Depending on the discriminant b2−4c, the solutions to the char-
acteristic equation (α+β and α−β) fall into three different categories, and correspondingly,
there emerge three kinds of solutions to the DE.

y(x) =


eαx
(
c1 cos(−iβx) + c2 sin(−iβx)

)
if b2 < 4c

c1e
αx + c2xe

αx if b2 = 4c

c1e
(α+β)x + c2e

(α−β)x if b2 > 4c

Note: in the first case, if b2 < 4c, then −iβ ∈ R.

1 Inhomogenous 2nd Order Differential Equations

But how would we solve a DE if the right hand side was not zero (if the DE was inhomo-
geneous)? For example, if we had a DE of the form

y′′ + by′ + cy = f.

In such a case, one would need to apply a different method to find a solution––say, applying
a Laplace transform, though, for an arbitrary forcing function f this could prove difficult.
Yet if f is periodic, then it is relatively easy to find a solution using Fourier series.

1.1 Fourier Series

Recall that for a periodic function f(x) over the interval [0, 2L],

f(x) = a0 +

∞∑
n=1

an cos
(nπx

L

)
+

∞∑
n=1

bn sin
(nπx

L

)
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is the Fourier series of f(x), where

a0 =
1

2L

∫ 2L

0
f(x)dx

an =
1

L

∫ 2L

0
f(x) cos

(nπx
L

)
dx

bn =
1

L

∫ 2L

0
f(x) sin

(nπx
L

)
dx.

Suppose that we want to solve a DE of the form

y′′ + Ey′ + Fy = f

where f is periodic over [0, 2π]. Then a good guess for the particular solution (or the
inhomogeneous solution) to the DE would be

yp(x) = a⋆0 +

∞∑
n=1

a⋆n cos(nx) +

∞∑
n=1

b⋆n sin(nx)

since f is itself of that form. The coefficients a⋆0, a
⋆
n, and b⋆n are different from the Fourier

series of f and are determined by plugging in the guess yp(x) back into the original DE.

Other than the particular solution yp, there also exists the homogeneous solution, yh, which
can be easily found from what we mentioned earlier. With both yp and yh in hand, we can
find the overall solution to the DE:

y(x) = yp(x) + yh(x).

To better grasp how one might solve these inhomogeneous 2nd order DEs, we will consider
some examples and their solutions using Fourier series, then compare those solutions with
the numerical ones given by the ODE solver odeint which is a part of the scipy.integrate
Python library.

1.2 Integral Identities

Recall the following integral identities, for n,m ∈ N>0, which are frequently used when
computing Fourier series.∫ 2π

0
sin(nx)dx = 0

∫ 2π

0
sin(nx) sin(mx)dx = πδn,m

∫ 2π

0
cos(nx)dx = 0

∫ 2π

0
cos(nx) cos(mx)dx = πδn,m

∫ 2π

0
sin(nx) cos(nx)dx = 0

Where δn,m is the Kronecker delta function

δn,m =

1 for n = m

0 for n ̸= m
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2 Discontinuous Example: Square Wave as Forcing Function

Consider the differential equation

y′′ + 2y′ + 5y = fsq

where

fsq(x) =

1 if x < π (mod 2π)

−1 if x ≥ π (mod 2π).

and initial conditions
y(0) = 1, y′(0) = 0.

2.1 Computing Fourier Series of fsq

With fsq periodic with period 2π, we can find its Fourier series by computing

a0 =
1

2π

∫ 2π

0
fsq(x)dx =

1

2π

[ ∫ π

0
dx−

∫ 2π

π
dx

]
= 0

an =
1

π

∫ 2π

0
fsq(x) cos(nx)dx =

1

π

[ ∫ π

0
cos(nx)dx−

∫ 2π

π
cos(nx)dx

]

=
1

π

[
1

n

∫ π

0
n cos(nx)dx− 1

n

∫ 2π

π
n cos(nx)dx

]
=

1

nπ

[
sin(nx)

∣∣∣π
0
− sin(nx)

∣∣∣2π
π

]
= 0

bn =
1

π

∫ 2π

0
fsq(x) sin(nx)dx =

1

π

[ ∫ π

0
sin(nx)dx−

∫ 2π

π
sin(nx)dx

]

=
1

π

[
1

n

∫ π

0
n sin(nx)dx− 1

n

∫ 2π

π
n sin(nx)dx

]
=

1

nπ

[
− cos(nx)

∣∣∣π
0
+ cos(nx)

∣∣∣2π
π

]

=
1

nπ

[
− cos(nπ)−− cos(0) + cos(2nπ)− cos(nπ)

]
=

1

nπ

[
2− 2 cos(nπ)

]
Recall that cos(nπ) = 1 for even n, and cos(nπ) = −1 for odd n. Thus,

bn =

0 for n even

4
nπ for n odd
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Figure 1: Plotting the Fourier series of the fsq for finitely many terms k.

Or equivalently,

bn =
2(1− (−1)n)

nπ

Therefore

fsq(x) =
∞∑
n=1

bn sin(nx).

We could have used the fact that if f is an odd function, then the coefficients of its Fourier
series are only those for the sin terms, i.e., that an = 0 for n ≥ 0, but it was good to verify
this fact for fsq (yet we will keep this in mind for the next example).

2.2 Computing yp

We make the guess that the particular solution to the DE is

yp = a⋆0 +

∞∑
n=1

a⋆n cos(nx) +

∞∑
n=1

b⋆n sin(nx).

Therefore

y′p =

∞∑
n=1

−na⋆n sin(nx) +

∞∑
n=1

nb⋆n cos(nx)

y′′p =

∞∑
n=1

−n2a⋆n cos(nx) +

∞∑
n=1

−n2b⋆n sin(nx)
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Plugging y′′p , y
′
p, and yp into our original DE y′′ + 2y′ + 5y = fsq yields

1

[ ∞∑
n=1

−n2a⋆n cos(nx) +

∞∑
n=1

−n2b⋆n sin(nx)

]
+

2

[ ∞∑
n=1

−na⋆n sin(nx) +
∞∑
n=1

nb⋆n cos(nx)

]
+

5

[
a⋆0 +

∞∑
n=1

a⋆n cos(nx) +

∞∑
n=1

b⋆n sin(nx)

]
= fsq

Let

S
(
z
)
=

∞∑
n=1

z sin(nx), C
(
z
)
=

∞∑
n=1

z cos(nx).

Then

fsq = S
(
bn

)
= S

(
(2− (−2)n)

nπ

)
=⇒

C
(
− n2a⋆n

)
+ S

(
− n2b⋆n

)
+ S

(
− 2na⋆n

)
+ C

(
2nb⋆n

)
+ 5a⋆0 + C

(
5a⋆n

)
+ S

(
5b⋆n

)
= S

(
(2− (−2)n)

nπ

)

C
(
(5− n2)a⋆n + 2nb⋆n

)
+ S

(
(5− n2)b⋆n − 2na⋆n

)
+ 5a⋆0 = C

(
0
)
+ S

(
(2− (−2)n)

nπ

)
+ 0

By matching coefficients, we see that

0 = 5a⋆0 =⇒ a⋆0 = 0

0 = (5− n2)a⋆n + 2nb⋆n

(2− (−2)n)

nπ
= (5− n2)b⋆n − 2na⋆n.

Before we finish this computation, let’s find a⋆n and b⋆n based on general coefficients of y′

and y in the DE––this will save us time later.

2.3 Interlude: Computing a⋆n and b⋆n in yp for General Coefficients

Based on the partial work just completed, we notice that if we consider the 2nd order
inhomogeneous DE

y′′ + Ey′ + Fy = g,

where g has period 2π and is odd, therefore having Fourier series

∞∑
n=1

bn sin(nx),
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then to find a⋆0, a
⋆
n, and b⋆n for yp, we need only solve the system of equations

Fa⋆0 = 0

(F − n2)a⋆n + Enb⋆n = 0 (1)

(F − n2)b⋆n − Ena⋆n = bn (2)

From these systems of equations we find

a⋆n =
−Enb⋆n
(F − n2)

from (1)

into (2) =⇒ (F − n2)b⋆n − En

(
−En

(F − n2)
b⋆n

)
= bn

b⋆n

(
(F − n2) +

E2n2

(F − n2)

)
= b⋆n

(
(F − n2)

2
+ E2n2

(F − n2)

)
= bn

b⋆n =
(F − n2)bn

(F − n2)2 + E2n2

a⋆n =
−En

(F − n2)
b⋆n =

−En

(F − n2)

(
(F − n2)bn

(F − n2)2 + E2n2

)

a⋆n =
−Enbn

(F − n2)2 + E2n2

2.4 Return to Example 1

Here our DE is
y′′ + 2y′ + 5 = fsq

and the Fourier series of fsq is
∞∑
n=1

bn sin(nx)

where

bn =
(2− (−2)n)

nπ

Therefore our a⋆n and b⋆n for yp are

a⋆n =
−2bn

(5− n2)2 + 4n2

b⋆n =
(5− n2)bn

(5− n2)2 + 4n2

since E = 2 and F = 5.
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2.5 Computing yh

By what we mentioned at the very start, yh is simply

e−x

(
c1 cos(2x) + c2 sin(2x)

)
,

since
−2±

√
22 − 4 · 5
2

= −1± 2i.

2.6 Initial Conditions

Our overall solution is to this DE is

y = yp + yh

y(x) =

∞∑
n=1

a⋆n cos(nx) +

∞∑
n=1

b⋆n sin(nx) + e−x

(
c1 cos(2x) + c2 sin(2x)

)
Therefore to find c1 and c2 we use our initial conditions y(0) = 1 and y′(0) = 0.

y(0) =

∞∑
n=1

a⋆n cos(0) +

∞∑
n=1

b⋆n sin(0) + e0
(
c1 cos(0) + c2 sin(0)

)

=
∞∑
n=1

a⋆n + c1 = 1

=⇒ c1 = 1−
∞∑
n=1

a⋆n

y′(0) =
∞∑
n=1

−na⋆n sin(0) +
∞∑
n=1

nb⋆n cos(0) +−e0
(
c1 cos(0) + c2 sin(0)

)
+ e0

(
− 2c1 sin(0) + 2c2 cos(0)

)

=

∞∑
n=1

nb⋆n − c1 + 2c2 = 0

=⇒ c2 =
1

2

(
c1 −

∞∑
n=1

nb⋆n

)
Note

10000∑
n=1

a⋆n ≈ −0.1834 and
10000∑
n=1

nb⋆n ≈ 0,

which will be the values we use in our solution.

2.7 Plotting Solutions of y′′ + 2y′ + 5y = fsq

Using all the information we’ve now found, we can finally plot our solution and the solution
found by odeint. Seeing as we cannot compute an infinite sum required for yp, we will
instead compute

yp(x, k) =

k∑
n=1

a⋆n cos(nx) +

k∑
n=1

b⋆n sin(nx)
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for increasing k ∈ N.

Figure 2: Solution to y′′ + 2y′ + 5y = fsq with y(0) = 1 and y′(0) = 0. The solution given
by what was found in section 2 is labeled ‘manual’ and the dotted line is the numerical
solution of the DE from the scipy.integrate Python library. The value of k above each
subplot refers to the k in yp(x, k).

When k = 0, only yh is plotted (see Figure 2), and we see that by the time k = 5, the two
solutions are nearly identical. Recall that the even terms do not contribute anything to
yp(x, k) because of the definition of bn; that is why only odd k are plotted.
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3 Continuous Example: Triangle Wave as Forcing Function

Consider the differential equation

y′′ + y′ + 16y = ftr

where

ftr(x) =


2
πx for x < π

2 (mod 2π)

−2
π (x− π) for π

2 < x < 3π
2 (mod 2π)

2
π (x− 2π) for 3π

2 < x (mod 2π)

and initial conditions

y(0) =
1

2
, y′(0) = 0

3.1 Computing Fourier Series of ftr

Since the triangle wave is an odd function, its coefficients for the cos terms, a0 and an, are
zero. So we need only compute the coefficients for bn.

bn =
1

π

∫ 2π

0
ftr(x) sin(nx)dx

=
1

π

2

π

[∫ π
2

0
x sin(nx)dx−

∫ 3π
2

π
2

(x− π) sin(nx)dx+

∫ 2π

3π
2

(x− 2π) sin(nx)dx

]
Recall that by using integration by parts,∫

udv = uv −
∫

vdu.

Let us find
∫ b
a (x− λ) sin(nx)dx and use that solution for each of the three integrals.

u = x− λ du = 1

v =
−1

n
cos(nx) dv = sin(nx)

∫ b

a
(x− λ) sin(nx)dx =

[
(x− λ)

−1

n
cos(nx)

]∣∣∣∣∣
b

a

−
∫ b

a

−1

n
cos(nx)

=
1

n

[
(a− λ) cos(na)− (b− λ) cos(nb) +

1

n

(
sin(nb)− sin(na)

)]

=
n(a− λ) cos(na)− sin(na) + sin(nb)− n(b− λ) cos(nb)

n2
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Applying this to find bn, we get

bn =
2

π2

[∫ π
2

0
x sin(nx)dx−

∫ 3π
2

π
2

(x− π) sin(nx)dx+

∫ 2π

3π
2

(x− 2π) sin(nx)dx

]

=
2

π2

[
n(0− 0) cos(n0)− sin(n0) + sin(nπ

2 )− n(π2 − 0) cos(nπ
2 )

n2

−
n(π2 − π) cos(nπ

2 )− sin(nπ
2 ) + sin(n3π

2 )− n(3π2 − π) cos(n3π
2 )

n2

+
n(3π2 − 2π) cos(n3π

2 )− sin(n3π
2 ) + sin(n2π)− n(2π − 2π) cos(n2π)

n2

]

=
2

n2π2

[
sin(n

π

2
)−������nπ

2
cos(n

π

2
)

−
(
�������−nπ

2
cos(n

π

2
)− sin(n

π

2
) + sin(n

3π

2
)−�������nπ

2
cos(n

3π

2
)

)

+
��������−nπ

2
cos(n

3π

2
)− sin(n

3π

2
)

]

=
2

n2π2

[
sin(n

π

2
) + sin(

π

2
)− sin(n

3π

2
)− sin(n

3π

2
)

]

=
4

n2π2

[
sin(n

π

2
)− sin(n

3π

2
)

]
Observing that

sin

(
n
π

2

)
=



1 for n ≡ 1 (mod 4)

0 for n ≡ 2 (mod 4)

−1 for n ≡ 3 (mod 4)

0 for n ≡ 0 (mod 4)

sin

(
n
3π

2

)
=



−1 for n ≡ 1 (mod 4)

0 for n ≡ 2 (mod 4)

1 for n ≡ 3 (mod 4)

0 for n ≡ 0 (mod 4)

Therefore

bn =


8

n2π2 for n ≡ 1 (mod 4)

−8
n2π2 for n ≡ 3 (mod 4)

0 otherwise

(1)

Or equivalently,

bn =
8(−1)

(n−1)
2

n2π2
for n = 1, 3, 5, . . . , otherwise 0
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Figure 3: The Fourier series of ftr for finitely many terms k, i.e., each subplot shows∑k
n=1 bn sin(nx).

3.2 Computing yp

Recall from section 2.3 that if we have a differential equation

y′′ + Ey′ + Fy =

∞∑
n=1

bn sin(nx)

then the values of a⋆n and b⋆n for

yp(x) =
∞∑
n=1

a⋆n cos(nx) +
∞∑
n=1

b⋆n sin(nx)

are

a⋆n =
−Enbn

(F − n2)2 + E2n2
, b⋆n =

(F − n2)bn

(F − n2)2 + E2n2
.

Since we are now interested in the differential equation

y′′ + y′ + 16y = ftr,

we have that

a⋆n =
−nbn

(16− n2)2 + n2
, b⋆n =

(16− n2)bn

(16− n2)2 + n2

where bn is just as computed in the previous section.

3.3 Computing yh

r =
−1±

√
1− 64

2

=
−1

2
± 3

2

√
7i
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Therefore

yh(x) = e−
1
2
x

(
c1 cos

(3
2

√
7x
)
+ c2 sin

(3
2

√
7x
))

3.4 Initial Conditions

Given that

y(0) =
1

2
, y′(0) = 0,

we find

y(0) =
∞∑
n=1

a⋆n cos(n0) +
∞∑
n=1

b⋆n sin(n0) + e−
1
2
0

(
c1 cos

(3
2

√
7 · 0

)
+ c2 sin

(3
2

√
7 · 0

))

=
∞∑
n=1

a⋆n + c1 =
1

2
=⇒ c1 =

1

2
−

∞∑
n=1

a⋆n

y′(0) =
∞∑
n=1

−na⋆n sin(n0) +

∞∑
n=1

nb⋆n cos(n0)−
1

2
e−

1
2
0

(
c1 cos

(3
2

√
7 · 0

)
+ c2 sin

(3
2

√
7 · 0

))
+

e−
1
2
0

(
− c1

3

2

√
7 sin

(3
2

√
7 · 0

)
+ c2

3

2

√
7 cos

(3
2

√
7 · 0

))

=
∞∑
n=1

nb⋆n − 1

2
c1 +

3

2

√
7c2 = 0

=⇒ c2 =
2

3
√
7

(
c1
2

−
∞∑
n=1

nb⋆n

)

3.5 Plotting Solutions of y′′ + y′ + 16y = ftr

With c1 and c2 found, we have everything to plot the solution to the DE y′′+y′+16 = ftr.

y(x) = yp(x, k) + yh(x)

=
k∑

n=1

a⋆n cos(nx) +
k∑

n=1

b⋆n sin(nx) + e−
1
2
x

(
c1 cos

(3
2

√
7x
)
+ c2 sin

(3
2

√
7x
))

where

a⋆n =
−nbn

(16− n2)2 + n2
, b⋆n =

(16− n2)bn

(16− n2)2 + n2

and

c1 =
1

2
−

∞∑
n=1

a⋆n, c2 =
2

3
√
7

(
c1
2

−
∞∑
n=1

nb⋆n

)
This time,

10000∑
n=1

a⋆n ≈ −3.719× 10−4 and

10000∑
n=1

nb⋆n ≈ 9.867× 10−3.

And they both ostensibly converge to this value for arbitrarily large k.
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Figure 4: Solution to y′′ + y′ + 16y = ftr with y(0) = 1
2 and y′(0) = 0. The solution given

by what was found in section 3 is labeled ‘manual’ and the dotted line is the numerical
solution of the DE using the scipy.integrate Python library. The value of k above each
subplot refers to the k in yp(x, k).

Of course, the solutions match as we consider larger k for yp(x, k), though it resembles to
the numerical solution quite quickly; after only taking k = 5 terms of yp the two are nearly
indistinguishable, similar to the first example with the discontinuous forcing function.

4 Conclusion

While some of the computations might have looked lengthy, the overarching idea for how
one solves these ODEs using Fourier series is rather simple. All we need to do is find
the Fourier series of the forcing function, then the rest is just algebraic manipulation.
Surprisingly too, for the examples we considered, we don’t need to evaluate so many terms
of yp (i.e., we do not need even moderately large k) before

y(x) ∼ yp(x, k) + yh(x).
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