
On Pedagogy in Math
There sometimes exists an attitude in math that concepts are challenging to motivate absent a powerful
application of them––something to point to and say, “look: this is why these ideas are useful”. It’s almost
as if the great (and at several times unexpected) applications of math have forced the field to always justify
itself, to always reassure pupils that everything they learn from it will not only serve them well but will
be crucial in real, adult life. But his pedagogical plight is probably self-imposed; just as there is a time to
emphasize the practical virtues of math, there are arguably many more times where educators should urge
their students to embrace a more curious and artistic mindset––the same one that French mathematician
Henri Poincaré espouses when he says [1],

The scientist does not study nature because it is useful; he studies it because he delights in it,
and he delights in it because it is beautiful. If nature were not beautiful, it would not be worth
knowing, and if nature were not worth knowing, life would not be worth living. Of course I do
not here speak of that beauty that strikes the senses, the beauty of qualities and appearances;
not that I undervalue such beauty, far from it, but it has nothing to do with science; I mean that
profounder beauty which comes from the harmonious order of the parts, and which a pure
intelligence can grasp.

Granted, reciting this quote to a room full of bored, restless, and unmotivated students would very rarely
change their disposition toward math. But the same can be said of any explanation of math’s practical
merits, and, if anything, emphasizing how fascinating math can be in its own right, removed from its
practical merits, might be more likely to inspire interest than to hammer home its applications. After all
(at least in principle) every student can appreciate and can try to grasp what is beautiful about math, but
not all students, as it turns out, will actually use it. It’s hard to imagine a student scoffing at the idea of
attending an art class, complaining that there will never come a time where they will need to know what
a primary or complementary color is or how to hold a paintbrush or fire pottery in a kiln or shade with a
pencil––they know that that’s not the point; they know that they are going to art class to have fun and that
they might as well try and see what they get out of it. The same can and should be said for math. This
mindset not only frees educators from justifying their subject but reminds them of the better ways to teach
it. Would an educator that knows, deep down, that what makes math worth teaching is how it explores
and represents and distills beautiful relationships cudgel their students over the head with formulas and
their memorization and mindless application? It would seem very unlikely. It is the hope of the writer that
this introduction to an introduction on elliptic curves will remind both those already fond and hopefully
soon to be fond of math that most of what makes a subject interesting is not the subject itself, but how it
is expressed and approached by educators and pupils alike. Inasmuch as this writer follows through on
their end of the bargain, it is hoped that the reader will follow through on theirs.
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Thus marks the exploration of a well-known and beautiful object in math: the elliptic curve. An elliptic
curve is the set of solutions to a cubic polynomial equation of two variables over a field1 (”over”, here,
means that the cubic polynomial takes members of the field as input). E.g., if K is a field and E is the cubic
polynomial equation y2 = 3x3 + 4x2 + x− 3, then E(K) would be the set of points (x,y) ∈ K that satisfy E.
Using a change of variables, most cubic polynomials can be written as

y2 = x3 + ax+ b

for variables x and y and constants a and b. Written in this manner, the polynomial is said to be in
Weierstrass form. Consider the following example elliptic curve

E1(R) = {(x,y) ∈ R2 ∣∣ y2 = x3 − x+ 1}.

What can be said about it? We can immediately tell that E1(R) is symmetric about the x-axis since y takes
both the positive and negative square root of x3 − x+ 1. Over R, the square root of a negative number is
not defined, so we should inquire where x3 − x+ 1 becomes negative, and thus, E1(R) is undefined. Let
g(x) = x3 − x+ 1; we notice that g(−1) = 1 and g(−2) = −5. Therefore, by the intermediate value theorem,
there exists some x0 ∈ R such that −2 < x0 < −1 and g(x0) = 0. Thus, the domain of E1(R) is [x0,∞). We
can verify these observations by plotting E1(R) (see figure 1).

Figure 1: E1(R) graphed in the xy-plane. Notice that the curve is defined starting somewhere between -2
and -1 and how it is symmetric about the x-axis.

Another Example Elliptic Curve It so happened that E1(R) was continuous2, but this will not necessarily
be the case. Consider

E2(R) = {(x,y) ∈ R2 ∣∣ y2 = x3 − 4x+ 2},

and let h(x) = x3 − 4x+ 2. Plugging in some values for x into h(x), we construct the following table:

1For our purposes a field can be understood as a collection of elements where one can add, subtract, multiply, and divide any
two elements––excluding division by zero. The real numbers, denoted as R, form what is likely the most familiar field to those who
have studied calculus. Other examples include the rational numbers––comprised of every ratio of integers, denoted as Q––and the
complex numbers, denoted as C, which are of the form a+bi, where a,b ∈ R and i :=

√
−1.

2Continuous isn’t technically the correct terminology. Since the elliptic curves discussed do not pass the vertical line test, they are
not well defined, and hence they are not functions. Continuity is usually only considered a property of functions, but the word is
here invoked to refer to the fact that the ”shape” of the curve has no breaks or skips in it.
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x h(x)

2 2
1 -1
0 2
-2 2
-3 -13

Inspecting this table and recalling again the intermediate value theorem, we determine there must exist
x1, x2, x3 ∈ R where

−3 < x1 < −2, 0 < x2 < 1, 1 < x3 < 2, and h(x1) = h(x2) = h(x3) = 0.

And so it follows that the domain of E2(R) is [x1, x2]∪ [x3,∞), which we can again verify by plotting E2(R)
(see figure 2).

Figure 2: Notice E2(R) is discontinuous unlike E1(R) shown in figure 1.

1 Additional Structure Underlying Elliptic Curves

Coming up with example elliptic curves and plotting their solutions can offer only so much insight into
these mathematical objects. Another natural avenue of inquiry is to ask what kinds of structures or rela-
tionships exist between the members of an elliptic curve E. That is to say that we should ask ourselves,
“how might any two members of E be related?” Moreover, how could we, given two members of E, produce
a third?

If we focus on elliptic curves like the ones already discussed (namely, those over R), we can answer the
above question geometrically: we draw a line between two given points on E(R), then find where that line
intersects the curve a third time (see figure 3).

This process of taking two points on an elliptic curve E(R), drawing a line connecting them, then finding
the other point of intersection with E(R), can be thought of as a binary operation, which we’ll denote as ⋆.
For example, in figure 3, P ⋆Q = M3.

With this conception of ⋆ in hand, a fairly straightforward question emerges: given the points P = (α1,β1)
and Q = (α2,β2) on an elliptic curve satisfying y2 = x3 + ax+ b, can we produce an explicit formula for
P ⋆Q = M = (α3,β3) in terms of P and Q?

1.1 Using P and Q to find M To tackle this question, we should start by determining the equation of the
line connecting P and Q in terms of P and Q themselves. We know that its slope is m = β2−β1

α2−α1
, and the

3This is an intuitive definition of ⋆ that unfortunately (for reasons that will be discussed later) doesn’t quite work but is very close
to the actual definition.
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Figure 3: The line connecting points P and Q on the elliptic curve E2(R) intersects E2(R) at another point:
M.

general equation of a line with slope m intersecting the y axis at h is written as

y = mx+ h.

Therefore, β1 −mα1 = h since (α1,β1) is one of the points on the line connecting P = (α1,β1) and
Q = (α2,β2) (unsurprisingly, it is also the case that h = β2 −mα2). Determining where else this line
intersects the elliptic curve merely involves substituting y = mx+ h into y2 = x3 + ax+ b.

y2 = x3 + ax+ b

(mx+ h)2 = x3 + ax+ b

m2x2 + 2mhx+ h2 = x3 + ax+ b

0 = x3 −m2x2 + (a− 2mh)x+ b− h2 = f(x)

Since P = (α1,β1) and Q = (α2,β2) are already known to satisfy the equation of the line and the elliptic
curve, f(x) must factor as

f(x) = (x−α1)(x−α2)(x−α3).

If we expand this product of linear factors, the coefficients of each term must equal those of x3 −m2x2 +
(a− 2mh)x+ b− h2, which allows us to solve for α3.

f(x) = (x−α1)(x−α2)(x−α3)

=
(
x2 − (α1 +α2)x+α1α2

)
(x−α3)

= x3 −α3x
2 − (α1 +α2)x

2 +α3(α1 +α2)x+α1α2x−α1α2α3

= x3 − (α1 +α2 +α3)x
2 + (α1α2 +α1α3 +α2α3)x−α1α2α3

=⇒ −m2 = −(α1 +α2 +α3)

α3 = m2 −α1 −α2

To find β3, we simply substitute α3 for x in our equation of the line, which gives us that

β3 = mα3 + h.

And thus we have successfully found M = (α3,β3) from P and Q––though, not entirely; there are some
additional cases that we need to consider depending on P and Q.
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1.2 Potential Problems With Finding M from P and Q What happens if P = Q, or even more worrisome,
if P = (α,β) and Q = (α,−β) (see figure 5)? If the former is true, we notice that as Q comes closer to P,
the line connecting them approaches the tangent line to the curve at P (depicted in figure 4)––this is what
the line “connecting” P to itself becomes, and it is therefore the line we will use to find the other point of
intersection with the curve.

Figure 4

To find the slope of the tangent line to an elliptic curve E at a point P, we only need to recall how to
perform implicit differentiation with respect to x.

y2 = x3 + ax+ b

d

dx
y2 =

d

dx

(
x3 + ax+ b

)
2y

dy

dx
= 3x2 + a

dy

dx
=

3x2 + a

2y
= m

Therefore, if P = (α,β) on an elliptic curve which satisfies y2 = x3 + ax+ b, then P ⋆ P = (σ, τ), where

σ = m2 − 2α τ = mσ+ h

m =
3α2 + a

2β
h = β−mα.

To address what P ⋆Q becomes when P and Q are reflections of each other over the x-axis (as shown figure
5), we must rethink the binary operation ⋆ as we presently know it, and introduce the notion of a group.

2 Groups and Abstraction in Math

It turns out that the points on the elliptic curves we have been investigating have a rather significant
underlying structure. That structure is what is known as a group in mathematics. Vaguely, you can think
of a group as an abstraction of symmetry and regularity itself. Groups emerged from the work of Évariste
Galois in the mid-19th century when mathematicians were attempting to solve polynomials of degree five
and greater using explicit formulas, and it wasn’t until several decades after that time until the definition
of a group was settled upon––one that was neither too strict or too general so that it may be useful. Despite
the fact that the modern notion of a group is a human invention that has only existed for a few centuries,
groups have proven to be a powerful tool in chemistry, physics, cryptography, and many other fields. Yet
this should not be too surprising; a lot of mathematics concisely captures very general patterns that both
predictably and unpredictably give rise to powerful models that interpret natural phenomena.
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Figure 5: What is P ⋆Q when P is directly above Q? The line connecting them does not intersect the elliptic
curve E at another point––at least not until we view E differently.

For example, consider the Arabic numeral 5. What does it represent? Not just five oranges, five geese,
or five pairs of scissors, but any five distinct things. With the abstraction of numbers at our disposal, the
fact that “if one drops three apples into a bucket already containing seven apples, then the bucket now
contains ten apples’”can be simply expressed as “3 + 7 = 10”.

The relevant abstraction that groups capture is the fact that certain collections of objects behave nicely
with one another. More concretely, a group is a set of elements and a binary operation such that (1) there
exists a “do nothing” element4, (2) all elements have an inverse element (so that the output of the binary
operation between an element and its inverse is the identity), and (3) the binary operation is associative.
Associativity means that no matter how we arrange the parenthesis in an expression, we get the same
result.

One of the simplest groups is that of the integers, denoted Z, under the binary operation of addition; there
exists a “do nothing” integer which doesn’t change any other integer when added to it (zero), for every
integer there is an opposite integer (its negative), and for any a,b, c ∈ Z,

a+ (b+ c) = (a+ b) + c.

The group of integers under addition, sometimes written as (Z,+), is an example where the binary oper-
ation is commutative, that is, for any two integers a,b ∈ Z, a+ b = b+ a. When this is the case, we say
that the group is abelian (the name coming from the 19th century mathematician Niels Henrik Abel).

3 Group Structure of Elliptic Curves

So then, how are elliptic curves groups? For reasons we’ll continue to elaborate upon, the members of the
elliptic curve are the elements of the group, and the binary operation is nearly the same as the ⋆ we have
already discussed. The alteration we’ll make to ⋆ is that we reflect its output across the x-axis (depicted in
figure 6). This alteration is required to ensure that ⋆ is an associative binary operation and that the identity
of the group behaves as desired, though, this in and of itself does not make it clear why ⋆ is associative. It
is actually anything but obvious, geometrically speaking, that ⋆ is associative. It would not be conceptually
difficult (just computationally tedious) to verify that ⋆ is associative using the explicit formulas we derived
earlier. Granted, the formulas would be changed to reflect the alteration just made to ⋆; namely, the y
component of P ⋆Q––what was denoted τ in section 1.2––would be multiplied by -1.

4This is often referred to the identity or neutral element. The number 0 acts as an identity element under addition for virtually
every set of numbers. Actually, it might be more accurate to say that in any setting where the relevant operation is addition, 0
will denote the identity or neutral element by definition––0 is commonly referred to as the additive identity, as opposed to, say, the
multaplicative identity that is usually denoted by the number 1.
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Figure 6: The actual definition of ⋆ : P ⋆Q = R, not what is now denoted −R.

But what, then, would the identity element of the elliptic curve be? Is there a point O on an elliptic curve
E such that for any other point P on E, O ⋆ P = P? Try as you might to discover such a point, it does not
exist while considering E with traditional euclidean geometry. Instead, we need to consider E with what is
known as projective geometry. In doing so, such a point O becomes part of E: it is the point infinitely far
off in the y direction. Under the axioms of projective geometry, all vertical lines intersect O––in the same
way that if you were to stare at two railroad tracks which you know to be parallel, they would nonetheless
seem to intersect at the horizon (applying this projective lens to the xy-plane produces some interesting
results; see figure 7 to view what the parabola y = x2 becomes). O acts as the identity element because for

Figure 7: Looking at the xy-plane with a new perspective. All vertical lines intersect at an infinitely far
point. This means a parabola like y = x2 is actually an ellipse viewed through projective geometry. Image
curtesy of Bill Shillito [2].

any point P above the x-axis, the line between P and O would be vertical, and so, the other point which
the curve intersects is the one directly below P, which becomes P after we reflect over the x-axis––this is
why we altered ⋆ in the manner we did; it ensures that O “does nothing”; i.e, that O ⋆ P = P, as depicted
in figure 8.

Identifying O as the identity also lets us see that the inverse of each element on the elliptic curve is itself
reflected across the x-axis. The inverse of a point P is denoted −P, as also depicted in figure 8.
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Figure 8: Graph demonstrating P ⋆O = P and that P ⋆−P = O.

4 Rational Points on Elliptic Curves

The last topic we will cover in some capacity is how one would find rational points on an elliptic curve.
Based on the explicit formulas for P ⋆Q we derived in sections 1.1 and 1.2, so long as we find a single point
on E(Q), we can find 2P, 3P, and so on, each of which will also be members of E(Q) since computing P ⋆Q
only involves adding, subtracting, multiplying, and dividing––which recall, are precisely the operations
defined on Q. So at least for curves where finding a first rational point is simple, we can seemingly find
many other such rational points.

Let’s consider again the polynomial y2 = x3 − x+ 1, but now over Q; let

E1(Q) = {(x,y) ∈ Q2 ∣∣ y2 = x3 − x+ 1}.

We can find our first rational point without too much difficulty; 13 − 1 + 1 = 1, therefore P = (α,β) =
(1, 1) ∈ E1(Q). We’ll calculate 2P using the formulas we derived.

m =
3 ·α2 + a

2β
=

3 − 1
2

= 1

h = β−mα = 1 − 1 = 0

σ = m2 − 2α = −1
τ = −(mσ+ h) = −(−1 + 0) = 1

=⇒ 2P = (−1, 1).

We can also compute 3P = 2P ⋆ P = (−1, 1) ⋆ (1, 1).

m =
1 − 1

1 −−1
= 0

h = 1 − 0 = 1

σ = m2 −α1 −α2 = 0
τ = −(mσ+ h) = −1

=⇒ 3P = (0,−1)

Performing additional calculations, we find that 4P = (3,−5), and 5P = (5, 11). For n ∈ {1, 2, 3, 4, 5},
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nP ∈ Z2, but this trend ends when 6 = n: 6P = ( 1
4 , 7

8 ) ̸∈ Z2. Figure 9 plots P through 4P, E1(R), and
various lines to help trace what finding multiples of P looks like geometrically.

Figure 9: The black curve is E1(R), P = (1, 1) is the blue dot, 2P = (−1, 1) is the yellow dot, 3P = (0,−1) is
the green dot, and 4P = (3,−5) is the red dot. The color of the line used to find P ⋆ kP for k ∈ {1, 2, 3} is that
of the point kP. Where each line intersects E1(R) at the point other than P and kP, a dotted line connects
that intersection with its reflection over the x-axis––giving the point (k+ 1)P, which shares its color with
the dotted line.

We can continue to find multiples of P for larger n ∈ Z⩾1 (See figure 10). For n even moderately large,
E1(R) becomes covered by the multiples of P within the displayed region. Yet do not be under any illusion
that even an infinite number of multiples of P would give all of E1(R). The real numbers are infinitely
more dense than the rationals, and while it might look like the multiples of P saturate E1(R), there still
remain an uncountably infinite number of points on E1(R) which the multiples of P do not give. We have
not shown that these multiples of P even make up all of E1(Q), but it turns out that the group of finite
points on an elliptic curve is finitely generated––that is, there are a finite number of points in E1(Q) which
generate all of E1(Q).
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Figure 10: Plotting an increasing number of the multiples of P. The title of each subplot indicates the
largest multiple of P calculated. N.b. that not all multiples may be within the region displayed.
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